1,737 research outputs found

    Minimizing the Dick Effect in an Optical Lattice Clock

    Full text link
    We discuss the minimization of the Dick effect in an optical lattice clock. We show that optimizing the time sequence of operation of the clock can lead to a significant reduction of the clock stability degradation by the frequency noise of the interrogation laser. By using a non-destructive detection of the atoms, we are able to recycle most of the atoms between cycles and consequently to strongly reduce the time spent capturing the atoms in each cycle. With optimized parameters, we expect a fractional Allan deviation better than 2E-16τ1/2\tau^{-1/2} for the lattice clock.Comment: 6 pages, 10 figures. Submitted to IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Contro

    Electrons in a closed galaxy model of cosmic rays

    Get PDF
    The consistency of positrons and electrons was studied using a propagation model in which the cosmic rays are stopped by nuclear collisions or energy losses before they can escape from the galaxy (the closed-galaxy model). The fact that no inconsistency was found between the predictions and the data implies that the protons which produce the positrons by nuclear reactions could have their origin in a large number of distant sources, as opposed to the heavier nuclei which in this model come from a more limited set of sources. The closed-galaxy model predicts steep electron and positron spectra at high energies. None of these are inconsistent with present measurements; but future measurements of the spectrum of high-energy positrons could provide a definite test for the model. The closed-galaxy model also predicts that the interstellar electron intensity below a few GeV is larger than that implied by other models. The consequence of this result is that electron bremsstrahlung is responsible for about 50% of the galactic gamma-ray emission at photon energies greater than 100 MeV

    The role of cosmic rays and Alfven waves in the structure of the galactic halo

    Get PDF
    The effect that cosmic rays and the Alfven waves they generate have on the structure of the plasma distribution perpendicular to the galactic disk is examined. It is shown that the plasma distribution exhibits two length scales and the predicted values of gas density far from the galactic plane indicate that models involving hydrostatic equilibrium should be replaced by those allowing for a galactic wind

    CPN Tools 4: Multi-formalism and Extensibility

    Full text link
    Abstract. CPN Tools is an advanced tool for editing, simulating, and analyzing colored Petri nets. This paper discusses the fourth major re-lease of the tool, which makes it simple to use the tool for ordinary Petri nets, including adding inhibitor and reset arcs, and PNML export. This version also supports declarative modeling using constraints, and adds an extension framework making it easy for third parties to extend CPN Tools using Java.

    The Laser of the ALICE Time Projection Chamber

    Get PDF
    The large TPC (95m395 \mathrm{m}^3) of the ALICE detector at the CERN LHC was commissioned in summer 2006. The first tracks were observed both from the cosmic ray muons and from the laser rays injected into the TPC. In this article the basic principles of operating the 266nm266 \mathrm{nm} lasers are presented, showing the installation and adjustment of the optical system and describing the control system. To generate the laser tracks, a wide laser beam is split into several hundred narrow beams by fixed micro-mirrors at stable and known positions throughout the TPC. In the drift volume, these narrow beams generate straight tracks at many angles. Here we describe the generation of the first tracks and compare them with simulations.Comment: QM06 poster proceedings, 6 pages, 4 figure

    The Laser Calibration System of the ALICE Time Projection Chamber

    Full text link
    A Large Ion Collider Experiment (ALICE) is the only experiment at the Large Hadron Collider (LHC) dedicated to the study of heavy ion collisions. The Time Projection Chamber (TPC) is the main tracking detector covering the pseudo rapidity range η<0.9|\eta|< 0.9. It is designed for a maximum multiplicity \dNdy = 8000. The aim of the laser system is to simulate ionizing tracks at predifined positions throughout the drift volume in order to monitor the TPC response to a known source. In particular, the alignment of the read-out chambers will be performed, and variations of the drift velocity due to drift field imperfections can be measured and used as calibration data in the physics data analysis. In this paper we present the design of the pulsed UV laser and optical system, together with the control and monitoring systems.Comment: 4 pages, 3 figure

    Ultrastable lasers based on vibration insensitive cavities

    Full text link
    We present two ultra-stable lasers based on two vibration insensitive cavity designs, one with vertical optical axis geometry, the other horizontal. Ultra-stable cavities are constructed with fused silica mirror substrates, shown to decrease the thermal noise limit, in order to improve the frequency stability over previous designs. Vibration sensitivity components measured are equal to or better than 1.5e-11 per m.s^-2 for each spatial direction, which shows significant improvement over previous studies. We have tested the very low dependence on the position of the cavity support points, in order to establish that our designs eliminate the need for fine tuning to achieve extremely low vibration sensitivity. Relative frequency measurements show that at least one of the stabilized lasers has a stability better than 5.6e-16 at 1 second, which is the best result obtained for this length of cavity.Comment: 8 pages 12 figure
    corecore